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Abstract: This study addresses the event-based control of networked switched systems subject to cyber attacks. A novel mode-
based event-triggered mechanism is proposed, which is capable of characterising non-periodic denial-of-service (DoS) attacks.
A switching control law is employed in each subsystem to weaken the negative effects caused by DoS attacks. The time
sequences of system switchings, event triggerings and intermittent DoS attack behaviours are fully investigated, which yields a
resultant closed control system. Then, by using piecewise Lyapunov functional methods, sufficient conditions are formulated to
guarantee the concerned system exponentially stable. Meanwhile, the co-design methods for switching controllers and event-
triggering parameters can be developed. Finally, a numerical simulation example and a practical example of a second-order
oscillating circuit are presented to verify the proposed methods.

1Introduction
Switched systems have been applied in various fields due to their
capacity of modelling complex or uncertain systems [1]. By
importing an additional degree of freedom, switched systems
contribute to realising intelligent control or adaptive control.
However, more challenges are brought in due to their diverse and
complex dynamics, which lead to remarkable results. To mention a
few, stability problems were investigated on various categories of
switching signals, in which the case of arbitrary switching is an
important branch [2]. Cetinkaya et al. [3] mentioned that the
concepts of dwell-time and average dwell-time were usually
utilised to restrain the switching manners. The literature works [4,
5] were concerned with the stabilisation performance of stable or
unstable subsystems. In recent years, the problem of asynchronous
control has been arousing great research interests [6].

With the development of communication technologies, shared
networks are used to transmit data. Switched systems are no
exception to this tendency, and networked switched systems have
become a hot issue at the present time [7, 8]. Although this kind of
system inherits the advantages of networked control systems, a
series of phenomena caused by networks can not be ignored, such
as network congestions and transmission delays, which inspire
plenty of outcomes [9–11] and the reference therein. For saving
network resources, the concept of event-triggered control was
proposed in the late 1990s [12]. By considering the digital nature
of networks, Yue et al. [13] developed an effective event-triggered
communication scheme in the continuous-time domain with inter-
sampling behaviours. This kind of event-triggered mechanism
(ETM) skillfully excludes the Zeno behaviour and shows its
advantages when dealing with the issue of transmission delays,
which is widely utilised in various fields, such as networked
filtering [14, 15], networked control [16–18], and consensus
problems of multiagent systems [19]. In nature, networked control
systems with an event-triggered strategy are a category of hybrid
systems with complex dynamic characteristics [20]. Their
combination with switched systems heralds more potential and
promising work and some research work has been rising from this
point of view. Xiang and Johnson [21] incorporated a periodical
sampling scheme and an event-triggering strategy into switched
systems to analyse the asymptotic stability problem, in which
switchings were only permitted at sampling instants. This

hypothesis indeed simplifies the analytic process but yields too
much conservativeness. In [8, 22], network transmission delays
were taken into consideration when dealing with event-triggered
control problems for network-based switched linear systems.
Compared to typical physical plants, [8, 23] considered the
situation that the mode signal and the state signal were
simultaneously transmitted to the remote controllers, and the
asynchronous phenomenon between the subsystems and controllers
had to be addressed. However, it conversely makes the analytic
process rather complicated while the related analysis of system
dynamics is not thoroughly investigated. Roughly speaking, the
research on the control issue of networked switched systems is still
largely open, which inspires one motivation of this study.

In addition, networked control systems are vulnerable to cyber
attacks while the denial-of-service (DoS) attack is a primary branch
[24, 25]. One major task of this issue is to establish appropriate
mathematical models. In [26], the DoS attack was treated as a
special class of network-induced delay and then conventional
analysis approaches were employed. Stochastic models, such as
Bernoulli models [27] and Markov models [28], were established
to depict the uncertainties of DoS attacks. In contrast, [29] pointed
out that it was difficult to determine the intentions of DoS
attackers, and there existed many limitations for a certain kind of
statistical models. A general DoS attack underlying strategy was
addressed and the attack behaviours were restrained by the DoS
frequency and DoS duration. On another hand, [30] mentioned that
it was of practical significance to consider security requirements
and resource constraints comprehensively, which arouses great
interests recently and leads researchers to some preliminary results.
In contrast to conventional assumptions where the synchronous
DoS attacks or attacks only on one channel were considered,
literature works [31, 32] addressed the event-triggered control issue
under asynchronous DoS attacks. In [33], the influence of DoS
attacks was treated as a kind of packet dropouts. It was
characteriszed by a security-oriented resilient triggering strategy
while the triggering time-sequence was quite puzzling. Sun and
Yang [34] integrated a periodic update policy into the ETM.
Although the influence of DoS attacks can be counteracted, the
related time series analysis is quite complex, which may limit its
further application to other systems, for instance, switched systems.
The literature works [35, 36] modelled the studied system as a
switched system in accordance with the course of DoS attacks,
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which was appropriate to deal with both periodic or non-periodic
DoS attacks. However, an open-loop control scheme was selected
during the duration of DoS attacks, which resulted in some
potential safety hazard to some extent. Liu et al [37] was
concerned with the event-triggered load frequency control problem
under hybrid cyber attacks, including DoS attacks and stochastic
deception attacks. In [38], the secure consensus problem of
multiagent systems under DoS attacks was investigated, where the
attack frequency and duration were employed to constrain DoS
attacks. For switched systems, there have been a few research
works accounting for resource constraints and DoS attacks
simultaneously in the literature, which also motivates us in present
work.

Accordingly and in view of the above discussions, this work
addresses the event-based control of networked switched systems
subject to non-periodic DoS attacks. It is not just a simple
combination of switched systems, resource constraints and cyber
attacks. The major challenge lies in the complex system dynamics,
that is, the interactions of event triggerings, system switchings and
intermittent DoS attack behaviours. So, we devote ourselves to
simplifying the system dynamics and establishing a unified
analytic model, and the contributions of this paper can be
highlighted as follows: (i) a mode-based ETM is proposed in
accordance with the sleeping mode and the active mode of
intermittent DoS attacks. To the best of our knowledge, it is a novel
mathematical model to depict the influences of DoS attacks; (ii)
different from the case in [35] where an open-loop control scheme
is considered, this paper integrates secondary switching controllers
and zero-order holder (ZOH) in the communication scheme, which
makes the system under closed-loop control all the time to resist
DoS attacks; (iii) through time series analysis approaches, the
switched system with an event-based switching control strategy
under non-periodic DoS attacks is converted to a unified resultant
model; (iv) by using piecewise Lyapunov functional methods,
sufficient conditions are derived to ensure the system exponentially
stable (ES). Furthermore, we develop a co-design method for the
controller gains and the weighting matrices in the ETM.

Notation: Throughout this paper, ℝm represents the m-
dimensional Euclidean space, I is an identity matrix with adjustable
dimensions, and ℝn × m denotes a set of n × m real matrices. For a
real number c, ⌊c⌋ means the largest integer less than or equal to c.
For a matrix P, P

−1 refers to its inverse while P
T denotes the

transpose. For a symmetric matrix P, we define λmin(P) and λmax(P)
as the minimum and maximal eigenvalue of P. Without special
declarations, matrices are assumed to have compatible dimensions.

2Preliminaries
A typical event-based communication scheme of the networked
switched system is shown in Fig. 1. In the framework, the
periodically sampled system state is transmitted over wireless
networks, which is vulnerable to non-periodic DoS attacks. In
particular, switching controllers are adopted in each subsystem and
an intelligent decision unit is placed at the local actuator side,
which is used to determine the exact online controller according to
the current system mode. A ZOH is employed to hold the updated
control information until the next event occurs, while another ZOH
is employed to hold the system state. Note that the ZOHs are
always in working condition, even if the system is under DoS
attacks. In the following, the mathematical models of the physical
plant, event trigger, switching controllers and non-periodic DoS
attacks will be described in detail.

2.1 Physical plant

The concerned linear switched system is described as:

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t) (1)

where x(t) ∈ ℝnx and u(t) ∈ ℝnu denote the state vector and control
input, respectively. σ(t): [0, ∞) ↦ ℒ = 1, 2, …, M  represents the
switching signal, which is a piecewise continuous function. To be

specific, the switching sequences can be redefined as σ(t) = {
(l0, σ(l0)), (l1, σ(l1)), …, (lq, σ(lq)), …} with l0 = 0. When
t ∈ [lq, lq + 1), we say that the system mode σ(lq) is online with
corresponding system matrices Aσ(lq) and Bσ(lq).
 

Remark 1: Different from the system framework in [8], the
switching mode signal is not transmitted through the network into
the controllers but sent to the local actuator side. There is no
necessary to use the network to execute the data exchange between
the switched system and the local actuator, for instance, the serial
communication mode (RS485 bus) can be adopted. Furthermore,
we assume that digital controllers are employed and the control
information of all sub-controllers are sent to the actuator. Then, the
intelligent decision unit at the actuator side is capable of selecting
the exact control information according to the active system mode.
In this sense, the asynchronous phenomenon is beyond the scope of
this paper.

Before proceeding further, the following assumptions are of
great significance for detailed design work.

 
Assumption 1: The system states are fully measurable. The

implementations of data sampling and transmission in the physical
plant are assumed to be instant. That is, the network-induced
delays, data losses and disorders are out of the scope of this paper.

 
Assumption 2: As mentioned in [32], the forward and backward

communication channels may be attacked asynchronously.
However, this issue is not the main concern of this work, and we
assume only the forward channel is vulnerable to DoS attacks.
Furthermore, the cyber attack is detectable.

 
Remark 2: As shown in Fig. 1, only the data exchanges among

the event trigger, remote controllers and the local actuator are
executed through networks, where the corresponding network
channels are called the forward and backward communication
channels, respectively. Both two channels can be attacked in
practice. Except for the asynchronous issue, owing to the existence
of the ZOHs, the effects of attacks on the system can be considered
as the same in the following situations, only the forward channel is
attacked, or only the backward channel is attacked, or the two
channels are attacked synchronously.

 
Assumption 3: The frequency of data sampling is always higher

than that of system switching.
 
Remark 3: With the evolution of sampling techniques, it is not

difficult for the sampling frequency to reach the level of 1 kHz.
Comparatively speaking, the frequency of system switching is
much lower in consideration of physical constraints, for instance,

Fig. 1 System plant
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the inertia of practical systems. Hence, Assumption 3 is consistent
with reality, which will greatly contribute to the analysis of system
dynamics.

2.2 Modelling of DoS attacks

We consider a kind of power-constrained jamming signal [39]
expressed as:

Γ(t) =
1, t ∈ [dn, d

n + doff
n )

2, t ∈ [dn + doff
n , d

n + 1)
(2)

where the time sequences {d
n}n ∈ ℕ and {d

n + doff
n }n ∈ ℕ denote the

instants when DoS on/off and off/on transitions occur, and satisfy
d

n < d
n + doff

n < d
n + 1 for n ∈ ℕ. From the definition above, it is

indicated that the concerned system is healthy and network
communications are permitted in the intervals ⋃n ∈ ℕ [dn, d

n + doff
n )

while the concerned system is suffering from jamming attacks and
network communications are denied in the intervals
⋃n ∈ ℕ [dn + doff

n , d
n + 1). Considering the power-constrained

characteristic of DoS attacks and inspired by [36], we make the
following assumption:
 

Assumption 4: For the time interval Λn, 1 = [dn, d
n + doff

n ), there
always exists a positive scalar dmin satisfying

inf
n ∈ ℕ

{doff
n } ≥ dmin (3)

where {Λn, 1} are called the sleeping intervals of DoS attacks.
For the time interval Λn, 2 = [dn + doff

n , d
n + 1), there always exists

a positive scalar dmax satisfying

sup
n ∈ ℕ

{don
n } ≤ dmax (4)

where {Λn, 2} are called the active intervals of DoS attacks and we
define don

n = d
n + 1 − d

n − doff
n .

 
Remark 4: Compared to periodic DoS attacks considered in

[35], non-periodic ones are more consistent with the nature of
cyber attacks and it may bring more challenges for the controller
design. We define TDoS

n = doff
n + don

n  as a full attack period, then the
values of {TDoS

n }, {doff
n } and {don

n } are time-varying.
 

Remark 5: From the jamming signal (2), it is indicated that the
introduced DoS attack is intermittent, which is reasonable with
respect to its power-constrained characteristic. The concepts of
DoS duration and frequency [29] are more likely to reflect the
distributions of DoS attacks. Comparatively speaking, Assumption
4 depicts the constraints of DoS attacks from a more micro
perspective with dmin and dmax. The sleeping intervals {Λn, 1} and
active intervals {Λn, 2} are considered as individual behaviours, that
is, they may cause completely different effects on the system
performance.

2.3 Design of event-triggered mechanism

Taking no account of the effect of DoS attacks, an ETM similar to
that in [13] is introduced to improve the utilisation rate of network
resources:

tk + 1h = tkh + min
v ≥ 1, v ∈ ℕ

vh ∣ ek
T(t)Ωek(t)

≥ δxT(tkh + vh)Ωx(tkh + vh)
(5)

where h is the constant sampling period, δ is a predefined scalar,
tkh denotes the last triggering instant, x(tkh + vh) is the current
sampled state, the state error ek(t) ≜ x(tkh) − x(tkh + vh),

v = {1, 2, …, tk + 1h − tkh − 1}, Ω > 0 is a weighting matrix to be
designed.

Owing to the ZOH in the physical plant, the control input of
switched systems holds until next event, which is given as

u(t) = Kσ(t)x(tkh), t ∈ [tkh, tk + 1h) (6)

where the controller gain Kσ(t) is corresponding to each subsystem.
Note that the transmission failure of triggered data x(tkh) caused

by DoS attacks will greatly degrade the control performance.
Hence, an effort should be made for the event-triggered
communication scheme to be perfect and weaken the influence of
non-periodic DoS attacks.

Considering the nature of DoS attacks, completely blocking
network communications in the intervals ⋃n ∈ ℕ [dn + doff

n , d
n + 1), a

novel ETM can be established as:

bk + 1h = bkh + min
v ≥ 1, v ∈ ℕ

vh ∣ ek
T(t)Ωσ(t), Γ(t)ek(t)

≥ δΓ(t)x
T(bkh + vh)Ωσ(t), Γ(t)x(bkh + vh)

(7)

where {bkh} denotes the triggering sequences under DoS attacks.
Different from the Ω and δ in (5), Ωσ(t), Γ(t) and δΓ(t) are related to the
DoS jamming signal and the switching signal. When Γ(t) = 1,
δ1 ∈ [0, 1); when Γ(t) = 2, δ2 → ∞. The definitions of other
parameters can refer to the ETM (5).

 
Remark 6: From the definitions above, we set strict limitations

on the value of δΓ(t). δ1 ∈ [0, 1) represents that communications are
allowed according to control demands while δ2 → ∞ indicates that
no events will occur, which are corresponding to the sleeping mode
and the active mode of DoS attacks, respectively. In fact, the ETM
(7) where Γ(t) = 2 is used to depict the influences of DoS attacks
in systematic analysis and controller design. Note that only the
following ETM will be executed in the physical plant, which is
called an online ETM

bk + 1h = bkh + min
v ≥ 1, v ∈ ℕ

vh ∣ ek
T(t)Ωσ(t), 1ek(t)

≥ δ1x
T(bkh + vh)Ωσ(t), 1x(bkh + vh)

(8)

2.4 Design of switching controllers

This work introduces a switching control strategy in the event-
based communication scheme to resist DoS attacks. Before
designing a switching control law, we first make an in-depth
analysis of the time sequences of sampling instants and non-
periodic DoS attacks. As shown in Fig. 2, the sleeping intervals
{Λn, 1} and the active intervals {Λn, 2} are random and alternant. 
Based on the ETM (7), we can see that data transmissions over
networks will only occur at the sampling instants {kh}. So, we can
redefine the effective attack sequences based on (2):

Γ(t) =
1, t ∈ [Dn, D

n + Doff
n )

2, t ∈ [Dn + Doff
n , D

n + 1)
(9)

where D
n = ⌊d

n/h⌋ + 1 h, Doff
n = ⌊(dn + doff

n )/h⌋ + 1 h −D
n,

detailed explanations of parameters are similar to the ones in (2)
and we omit them here.

Without loss of generality, we update Assumption 4 as follows:
 
Assumption 5: For the time interval Υn, 1 = [Dn, D

n + Doff
n ), we

have

inf
n ∈ ℕ

{Doff
n } ≥ Dmin = ⌊dmin/h⌋h (10)

For the time interval Υn, 2 = [Dn + Doff
n , D

n + 1), we have
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sup
n ∈ ℕ

{Don
n } ≤ Dmax = ⌊dmax/h⌋ + 1 h (11)

where Don
n = D

n + 1 − D
n − Doff

n .
 
Remark 7: For instance, as shown in Fig. 2, the first active

interval Λ1, 2 comes between the third and fourth sampling instant.
Based on the ETM (7), the fourth sampling instant is the first one
affected by the attack in nature. Hence, the above equivalence
method dealing with non-periodic DoS attacks are reasonable,
which brings great convenience to the following design work.
Moreover, the case Doff

n → ∞ denotes that the concerned system is
healthy without any cyber attacks, and well control performance
can be guaranteed. The case 0 ≤ Don

n < h is also out of scope of this
work because this kind of DoS attacks has no effect on the
communication scheme.

Combining the state feedback controller (6), we give the
switching control law as follows:

u(t) = Kσ(t), Γ(t)x(bkh), t ∈ [bkh, bk + 1h) (12)

 
Remark 8: Unlike the design in [36] that the control loop is

open over {Λn, 2}, secondary sub-controllers need to be designed
for every subsystem in this work. That is, if the switched system is
consist of N subsystems, then 2N sub-controllers are at service.
Moreover, from the view of physical implementation, an intelligent
decision unit in Fig. 1 is utilised to execute the switching control
law according to detected attack modes and local sampling
sequences. That is, switchings of sub-controllers are only executed
at the sampling instants if a change of attack modes has been
detected, which is consistent with the equivalent processing of DoS
attacks illustrated in Remark 7.

2.5 Co-design of switching controllers and ETM

Based on the ETM (7) and the switching control law (12), a unified
resultant model of the concerned system will be formulated.
Inspired by [13], we divide the event triggering interval
ςk ≜ [bkh, bk + 1h) into sampling interval-like subintervals
χk, v

Γ(t) ≜ [Sk, v
Γ(t), Sk, v + 1

Γ(t) ), where Sk, v
Γ(t) ≜ bkh + vh,

[Sk, v
1 , Sk, v + 1

1 ) ∈ ⋃n ∈ ℕ Υn, 1 and [Sk, v
2 , Sk, v + 1

2 ) ∈ ⋃n ∈ ℕ Υn, 2. Then, it
is not difficult to deduce that we can always find a scalar vM ∈ ℕ

guaranteeing ςk = ∪v = 0
vM χk, v

Γ(t).
For t ∈ [Sk, v

Γ(t), Sk, v + 1
Γ(t) ), defining η(t) = t − bkh − vh yields :

0 ≤ η(t) < h (13)

Considering ek(t), η(t) and (12) yields that

u(t) = Kσ(t), Γ(t)(x(t − η(t)) + ek(t)), t ∈ χk, v
Γ(t) (14)

According to Assumption 3, it can be inferred that at most one
switching is permitted in the interval [Sk, v

Γ(t), Sk, v + 1
Γ(t) ), to be more

specific, no switching or one switching, which is corresponding to
the following two cases of the resultant system.

 

Case 1: Within [Sk, v
Γ(t), Sk, v + 1

Γ(t) ), no system switching happens and
the resultant system can be described as

ẋ(t) = Aσ(t)x(t) + Bσ(t)Kσ(t), Γ(t)(x(t − η(t))

+ek(t)), t ∈ [Sk, v
Γ(t), Sk, v + 1

Γ(t) )

x(t) = ψ(t), t ∈ [ − h, 0]

(15)

where we supplement the initial condition of the system state x(t)
with a continuous function ψ(t).

 
Case 2: Within [Sk, v

Γ(t), Sk, v + 1
Γ(t) ), one and only switching occurs

with lq − 1 < Sk, v
Γ(t) ≤ lq < Sk, v + 1

Γ(t) , where σ(lq) ∈ ℒ. We have

ẋ(t) = Aσ(lq − 1)x(t) + Bσ(lq − 1)Kσ(lq − 1), Γ(t)

(x(t − η(t)) + ek(t)), t ∈ [Sk, v
Γ(t), lq)

ẋ(t) = Aσ(lq)x(t) + Bσ(lq)Kσ(lq), Γ(t)

(x(t − η(t)) + ek(t)), t ∈ [lq, Sk, v + 1
Γ(t) )

x(t) = ψ(t), t ∈ [ − h, 0]

(16)

Before proceeding further, the following definitions are
introduced.

 
Definition 1: For a given switching signal σ(t), if there exist a

constant τa > 0 and a number N0 > 0 such that
Nσ(t)(t1, t2) ≤ N0 + (t2 − t1)/τa, where 0 ≤ t1 ≤ t2, Nσ(t)(t1, t2) denotes
the switching number over (t1, t2), we say σ(t) has an average dwell
time τa ([[8], Average dwell time]).

 
Definition 2: Let n(T1, T2) denote the number of DoS off/on

transitions over (T1, T2), to be more specific,
n(T1, T2) = card n ∈ ℕ ∣ T1 < D

n + Doff
n < T2 , where card

represents the number of the elements in the set. If there exist a
constant τb ∈ ℝ > 0 and a number ν ∈ ℝ ≥ 0 satisfying
n(T1, T2) ≤ ν + (T2 − T1)/τb for all T1, T2 ∈ ℝ ≥ 0 with T1 ≤ T2, we
say that a given sequence of DoS attacks Υn, 2 satisfies the DoS
frequency constraint described by τb and ν ([[29], DoS frequency]).

 
Definition 3 ([Exponentially stable]): The resultant system (15)

and (16) is guaranteed ES, if there exist positive constants ρ and ε
such that ∥ x(t) ∥≤ εe−ρt ∥ ψ0 ∥h holds for all t > 0, where ∥ ψ0 ∥h

≜ sup−h ≤ θ ≤ 0 ∥ x(θ) ∥ , ∥ ẋ(θ) ∥ , ρ is called the decay rate.
Based on the mode-based ETM (7), the control objective of this

paper is to design suitable switching controllers for each subsystem
such that the resultant system (15) and (16) is ES in the presence of
the non-periodic DoS attack (9), which satisfies the power
constraint in Assumption 5 and the DoS frequency constraint in
Definition 2.

3Main results
In this section, by using piecewise Lyapunov functional methods,
sufficient conditions will be developed for ensuring the concerned
system ES, and the controller gains are to be designed.
 

Fig. 2 Time sequence under non-periodic DoS attacks
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Theorem 1: For prescribed positive scalars δm

(m ∈ 1, 2 , δ1 ∈ 0, 1 , δ2 → ∞), αm, μm ∈ 1, ∞ , ϑ ∈ 1, ∞ , dmin,
dmax, τa, τb, h and matrices Kim, the switched system described by
(15) and (16) is ES with the proposed ETM (7) in the presence of
the non-periodic DoS attack (9), if there exist positive definite
matrices Pim ∈ ℝnx × nx, Qim ∈ ℝnx × nx, Rim ∈ ℝnx × nx, Zim ∈ ℝnx × nx,
Ωim ∈ ℝnx × nx, and Niml, Miml, Siml with appropriate dimensions such
that ∀(i, j) ∈ ℒ × ℒ, i ≠ j, l ∈ 1, 2

ϱ = −ln ϑ/τa + 2α1Dmin − 2(α1 + α2)h
−2α2Dmax − ln(μ1μ2) /τb > 0

(17)

Π1 =

Π11 ∗ ∗

Π21 Π22 ∗

Π31 0 Π33

< 0, (18)

Pi1 ≤ μ2Pi2, Pi2 ≤ βμ1Pi1

Qi1 ≤ μ2Qi2, Qi2 ≤ μ1Qi1

Ri1 ≤ μ2Ri2, Ri2 ≤ μ1Ri1

Zi1 ≤ μ2Zi2, Zi2 ≤ μ1Zi1

(19)

Pim ≤ ϑPjm

Qim ≤ ϑQjm

Rim ≤ ϑRjm

Zim ≤ ϑZ jm

(20)

where

Π11 =

Ξ1 ∗ ∗ ∗

Ξ2 Ξ3 ∗ ∗

Kim
T

Bi
T
Pim 0 −Ωim ∗

Ξ4 Ξ5 0 Ξ6

,

Π21 =
hAi 0 hBiKim hBiKim

hAi 0 hBiKim hBiKim

,

Π22 = diag − Rim
−1, − Zim

−1 ,

Π31 =

hMim1
T

hMim2
T 0 0

hNim1
T 0 0 hNim2

T

0 hSim1
T 0 hSim2

T

,

Π33 = diag − e
−2(2 − m)αmh

Zim, − e
−2(2 − m)αmh

Rim,

−e
−2(2 − m)αmh

Rim ,

Ξ1 = ( − 1)m − 12αmPim + Ai
T
Pim + PimAi + Qim

+Mim1 + Mim1
T + Nim1 + Nim1

T ,

Ξ2 = − Mim1
T + Mim2, β = e

2(α1 + α2)h,

Ξ3 = − e( − 1)m2αmhQim − Mim2 − Mim2
T − Sim1 − Sim1

T ,

Ξ4 = Kim
T

Bi
T
Pim − Nim1

T + Nim2, Ξ5 = − Sim1
T − Sim2,

Ξ6 = − Nim2 − Nim2
T + Sim2 + Sim2

T + δmΩim,
Dmin = ⌊dmin/h⌋h, Dmax = ⌊dmax/h⌋ + 1 h .

 
Proof: Consider the following Lyapunov functional candidate:

Vσ(t), Γ(t)(t) = xT(t)Pσ(t), Γ(t)x(t)

+∫
t − h

t

κΓ(t)x
T(s)Qσ(t), Γ(t)x(s)ds

+∫
−h

0

∫
t + v

t

κΓ(t)ẋ
T(s)Rσ(t), Γ(t)ẋ(s)dsdv

+∫
−h

0

∫
t + v

t

κΓ(t)ẋ
T(s)Zσ(t), Γ(t)ẋ(s)dsdv

(21)

where Pσ(t), Γ(t), Qσ(t), Γ(t), Rσ(t), Γ(t), and Zσ(t), Γ(t) are positive definite
matrices, κΓ(t) ≜ e2( − 1)Γ(t)αΓ(t)(t − s), and αΓ(t) is a positive scalar.

 
Case 1: Consider the system (15). For t ∈ [Sk, v

Γ(t), Sk, v + 1
Γ(t) ), no

system switching occurs. The switching mode i ∈ ℒ is assumed to
be active and let m = Γ(t) ∈ 1, 2 .

First, we consider the situation that [Sk, v
m , Sk, v + 1

m ) ∈ ⋃n ∈ ℕ Υn, 1

with m = 1. The time derivative of Vi1(t) is

V̇ i1(t) = −2α1Vi1(t) + xT(t)(2α1Pi1 + Ai
T
Pi1

+Pi1Ai + Qi1)x(t)

+2x(t − η(t))T
Ki1

T
Bi

T
Pi1x(t)

+2ek(t)
T
Ki1

T
Bi

T
Pi1x(t)

+hẋ
T(t)Ri1ẋ(t) + hẋ

T(t)Zi1ẋ(t)

−e
−2α1h

x(t − h)T
Qi1x(t − h)

+ek
T(t)Ωi1ek(t) − ek

T(t)Ωi1ek(t)

−∫
t − h

t

e
−2α1(t − s)

ẋ(s)T
Zi1ẋ(s)ds

−∫
t − h

t − η(t)

e
−2α1(t − s)

ẋ(s)T
Ri1ẋ(s)ds

−∫
t − η(t)

t

e
−2α1(t − s)

ẋ(s)T
Ri1ẋ(s)ds

+2ξ
T(t)Mi1G1(t) + 2ξ

T(t)Ni1G2(t)

+2ξ
T(t)Si1G3(t)

(22)

where

ξ(t) = xT(t) xT(t − h) ek
T(t) xT(t − η(t))

T,

Mi1 = Mi11
T

Mi12
T 0 0

T,

Ni1 = Ni11
T 0 0 Ni12

T T,

Si1 = 0 Si11
T 0 Si12

T T,

G1(t) = x(t) − x(t − h) − ∫
t − h

t

ẋ(s)ds,

G2(t) = x(t) − x(t − η(t)) − ∫
t − η(t)

t

ẋ(s)ds,

G3(t) = x(t − η(t)) − x(t − h) − ∫
t − h

t − η(t)

ẋ(s)ds .

For matrices Mi1, Ni1, Si1, Ri1 > 0 and Zi1 > 0, it is clear that

−2ξ
T(t)Mi1 ∫

t − h

t

ẋ(s)ds ≤ hξ
T(t)Mi1e

2α1h
Zi1

−1

Mi1
T
ξ(t) + ∫

t − h

t

e
−2α1h

ẋ(s)Zi1ẋ(s)ds

(23)

−2ξ
T(t)Ni1 ∫

t − η(t)

t

ẋ(s)ds ≤ hξ
T(t)Ni1e

2α1h
Ri1

−1

Ni1
T
ξ(t) + ∫

t − η(t)

t

e
−2α1h

ẋ(s)Ri1ẋ(s)ds

(24)

−2ξ
T(t)Si1 ∫

t − h

t − η(t)

ẋ(s)ds ≤ hξ
T(t)Si1e

2α1h
Ri1

−1

Si1
T
ξ(t) + ∫

t − h

t − η(t)

e
−2α1h

ẋ(s)Ri1ẋ(s)ds

(25)

Meanwhile, we notice that
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−∫
t − h

t

e
−2α1(t − s)

ẋ(s)T
Zi1ẋ(s)ds

≤ − ∫
t − h

t

e
−2α1h

ẋ(s)T
Zi1ẋ(s)ds

(26)

−∫
t − h

t − η(t)

e
−2α1(t − s)

ẋ(s)T
Ri1ẋ(s)ds

≤ − ∫
t − h

t − η(t)

e
−2α1h

ẋ(s)T
Ri1ẋ(s)ds

(27)

−∫
t − η(t)

t

e
−2α1(t − s)

ẋ(s)T
Ri1ẋ(s)ds

≤ − ∫
t − η(t)

t

e
−2α1h

ẋ(s)T
Ri1ẋ(s)ds

(28)

Combining the triggering condition in (7) and (22)–(28), we
have

V̇ i1(t) ≤ −2α1Vi1(t) + ξ
T(t) Π11 − Π21

T Π22
−1Π21

+hMi1e
2α1h

Zi1
−1

Mi1
T + hNi1e

2α1h
Ri1

−1
Ni1

T

+hSi1e
2α1h

Ri1
−1

Si1
T

ξ(t)

(29)

By using the Schur's complement and the sufficient condition
(18), it can be derived that

V̇ i1(t) ≤ − 2α1Vi1(t), t ∈ [Sk, v
1 , Sk, v + 1

1 ) (30)

Integrating both sides of (30), we have

Vi1(t) ≤ e−2α1(t − Sk, v
1 )Vi1(Sk, v

1 ), t ∈ [Sk, v
1 , Sk, v + 1

1 ) (31)

Next, a similar analysis process is conducted for
[Sk, v

m , Sk, v + 1
m ) ∈ ⋃n ∈ ℤ Υn, 2 with m = 2. It can be deduced that

V̇ i2(t) ≤ 2α2Vi2(t) + ξ
T(t) Π11 − Π21

T Π22
−1Π21

+hMi2Zi2
−1

Mi2
T + hNi2Ri2

−1
Ni2

T

+hSi2Ri2
−1

Si1
T

ξ(t)

(32)

Similarly, considering the sufficient condition (18) yields

Vi2(t) ≤ e2α2(t − Sk, v
2 )Vi2(Sk, v

2 ), t ∈ [Sk, v
2 , Sk, v + 1

2 ) (33)

Then, for m ∈ 1, 2 , a unified preliminary conclusion is given
as follows

Vim(t) ≤ e2( − 1)mαm(t − Sk, v
m )Vim(Sk, v

m ), t ∈ [Sk, v
m , Sk, v + 1

m ) (34)

We assume that [Sk, v
1 , Sk, v + 1

1 ) and [Sk, v + 1
2 , Sk, v + 2

2 ) are two adjacent
sampling intervals under different attack modes. According to (34),
we have

V(t) ≤

e−2α1(t − Sk, v
1 )Vi1(Sk, v

1 ), t ∈ [Sk, v
1 , Sk, v + 1

1 )

e2α2(t − Sk, v + 1
2 )Vi2(Sk, v + 1

2 ),

t ∈ [Sk, v + 1
2 , Sk, v + 2

2 )

(35)

Taking the sufficient condition (19) into account, it is easy to
show that

Vi2(Sk, v + 1
2 ) ≤ βμ1Vi1(Sk, v + 1

1 ) (36)

Similarly, we assume that [Sk, v
2 , Sk, v + 1

2 ) and [Sk, v + 1
1 , Sk, v + 2

1 ) are
two adjacent sampling intervals under different attack modes. It
can be deduced that

Vi1(Sk, v + 1
1 ) ≤ μ2Vi2(Sk, v + 1

2 ) (37)
 
Case 2: Consider the system (16). As there exists only one

switching in the interval [Sk, v
m , Sk, v + 1

m ), we assume
li < Sk, v

m ≤ lj < Sk, v + 1
m , where (i, j) ∈ ℒ × ℒ, i ≠ j, that is, the

subsystem i is active for t ∈ [Sk, v
m , lj) and the subsystem j is active

for t ∈ [lj, Sk, v + 1
m ).

For t ∈ [Sk, v
m , lj), similar to the analysis process in Case 1, one

has

Vim(t) ≤ e2( − 1)mαm(t − Sk, v
m )Vim(Sk, v

m ) (38)

For t ∈ [lj, Sk, v + 1
m ), according to the sufficient condition (20), we

have

V jm(t) ≤ ϑVim(t) ≤ ϑe2( − 1)mαm(t − Sk, v
m )Vim(Sk, v

m ) (39)
Next, we try to give a general conclusion on V(t) for t > 0 by

combining Cases 1 and 2. Before proceeding further, some
symbols should be predefined. Let n be the switching number of
σ(t) over (0, t) with the corresponding switching instants l1, l2,
…, ln , let N denote the number of DoS off/on transitions over
(0, t), and let Sln

− and Sln be the sampling instants right before and
after ln, respectively, which yields ln ∈ [Sln

−, Sln). Meanwhile, we
define S^N as the corresponding sampling instant when the Nth DoS
off/on transition occurs, and let S

~
N be the corresponding sampling

instant when the Nth DoS on/off transition occurs.
As the instants of system switchings and non-periodic DoS

attacks are intertwined and irregular, a random example is
illustrated in Fig. 3, in which we consider the first situation
t ∈ ⋃n ∈ ℕ Υn, 1. 

Combining (34)–(39) and Assumption 5 yields that

Fig. 3 Time sequence under non-periodic DoS attacks
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V(t)

≤ e
2α2(t − Sln

)
Vσ(ln), 2(Sln)

≤ ϑe2α2(t − Sln
−)Vσ(ln − 1), 2(Sln

−)

≤ ϑe2α2(t − S
^
N)Vσ(ln − 1), 2(S

^

N)

≤ ϑβμ1e
2α2(t − S

^
N)Vσ(ln − 1), 1(S

^

N

−
)

≤ ϑβμ1e
2α2(t − S

^
N)e−2α1(S

^
N − Sln − 1)Vσ(ln − 1), 1(Sln − 1)

≤ ϑ
2
βμ1e

2α2(t − S
^
N)e−2α1(S

^
N − Sln − 1

− )Vσ(ln − 2), 1(Sln − 1
− )

≤ ϑ
2
βμ1e

2α2(t − S
^
N)e−2α1(S

^
N − S

~
N − 1)Vσ(ln − 2), 1(S

~
N − 1)

≤ ϑ
2
βμ1μ2e

2α2(t − S
^
N)e−2α1(S

^
N − S

~
N − 1)Vσ(ln − 2), 2(S

~
N − 1
−

)

≤ ϑ
2
βμ1μ2e

2α2Dmaxe
−2α1DminVσ(ln − 2), 2(S

~
N − 1
−

)

⋮

≤ ϑ
n
β

N
μ1

Nμ2
N − 1e

2Nα2Dmaxe
−2Nα1DminVσ(0), 1(0)

≤ ϑ
n
β

N
μ1

Nμ2
Ne

2Nα2Dmaxe
−2Nα1DminVσ(0), 1(0)

≤ e−ϱtVσ(0), 1(0)

(40)

Next, we consider another situation, t ∈ ⋃n ∈ ℕ Υn, 2, similarly,
we have

V(t) ≤ ϑ
n
β

N
μ1

Nμ2
Ne

2Nα2Dmaxe
−2(N + 1)α1DminVσ(0), 1(0)

≤ e−ϱte
−2α1DminVσ(0), 1(0)

≤ e−ϱtVσ(0), 1(0)

(41)

Considering the defination of (21), one has

Λ1 ∥ x(t) ∥2 ≤ V(0)

≤ (λ2 + hλ3 + (h2/2)(λ4 + λ5)) ∥ ψ0 ∥h
2 (42)

where λ1 = λmin(Pim), λ2 = λmax(Pim), λ3 = λmax(Qim), λ4 = λmax(Rim) and
λ5 = λmax(Zim).

Combining (40), (41) and (42), we have

∥ x(t) ∥

≤
λ2 + hλ3 + (h2/2)(λ4 + λ5)

λ1
e−ϱ/2t ∥ ψ0 ∥h

(43)

Hence, it implies that the concerned system is ES with a decay
rate ρ = ϱ/2. This completes the proof. □

Next, based on Theorem 1, the design method of switching
controllers will be presented in Theorem 2.

 
Theorem 2: For prescribed positive scalars δm

(m ∈ 1, 2 , δ1 ∈ 0, 1 , δ2 → ∞), αm, μm ∈ 1, ∞ , ϑ ∈ 1, ∞ , dmin,
dmax, τa, τb, ρiml and h satisfying (17), the switched system described
by (15) and (16) with the switching controller gains Kim = YimXim

−1

is ES in the presence of the non-periodic DoS attack (9), if there
exist positive definite matrices Xim ∈ ℝnx × nx, Qim ∈ ℝnx × nx,
Rim ∈ ℝnx × nx, Zim ∈ ℝnx × nx, Ωim ∈ ℝnx × nx and N iml, Miml, S iml, Yim

with appropriate dimensions such that
∀(i, j) ∈ ℒ × ℒ, i ≠ j, l ∈ 1, 2

Π1 =

Π11 ∗ ∗

Π21 Π22 ∗

Π31 0 Π33

< 0, (44)

Xi1 ≤ βμ1Xi2, Xi2 ≤ μ2Xi1,

Qi1 ≤ μ2Qi2, Qi2 ≤ μ1Qi1

Ri1 ≤ μ2Ri2, Ri2 ≤ μ1Ri1

Zi1 ≤ μ2Zi2, Zi2 ≤ μ1Zi1

(45)

Xim ≤ ϑX jm

Qim ≤ ϑQ jm

Rim ≤ ϑR jm

Zim ≤ ϑZ jm

(46)

where

Π11 =

Ξ1 ∗ ∗ ∗

Ξ2 Ξ3 ∗ ∗

Yim
T

Bi
T 0 −Ωim ∗

Ξ4 Ξ5 0 Ξ6

,

Π21 =
hAiXim 0 hBiYim hBiYim

hAiXim 0 hBiYim hBiYim

,

Π22 = diag − 2ρim1Xim + ρim1
2

Rim,

−2ρim2Xim + ρim2
2

Zim ,

Π31 =

hMim1
T

hMim2
T

0 0

hN im1
T

0 0 hN im2
T

0 hS im1
T

0 hS im2
T

,

Π33 = diag − e
−2(2 − m)αmh

Zim, − e
−2(2 − m)αmh

Rim,

−e
−2(2 − m)αmh

Rim ,

Ξ1 = ( − 1)m − 12αmXim + XimAi
T + AiXim + Qim

+Mim1 + Mim1
T

+ N im1 + N im1
T

,

Ξ2 = − Mim1
T

+ Mim2, β = e
2(α1 + α2)h,

Ξ3 = − e( − 1)m2αmhQim − Mim2 − Mim2
T

− S im1 − S im1
T

,

Ξ4 = Yim
T

Bi
T − N im1

T
+ N im2, Ξ5 = − S im1

T
− S im2,

Ξ6 = − N im2 − N im2
T

+ S im2 + S im2
T

+ δmΩim,
Dmin = ⌊dmin/h⌋h, Dmax = ⌊dmax/h⌋ + 1 h .

 
Proof: According to Theorem 1, we first define Xim = Pim

−1, Qim

= XimQimXim, Rim = XimRimXim, Zim = XimZimXim, Ωim = XimΩimXim,
Miml = XimMimlXim, N iml = XimNimlXim, S iml = XimSimlXim, and
Yim = KimXim, where m ∈ 1, 2 , l ∈ 1, 2  and
(i, j) ∈ ℒ × ℒ, i ≠ j. Let Φ1 = diag I, I, I, I, Pim, Pim, I, I, I  and
Φ2 = diag Xim, Xim, Xim, Xim, Xim, Xim, Xim, Xim, Xim .

It is not difficult to find that

(ρim1Rim − Xim)Rim
−1(ρim1Rim − Xim) ≥ 0

holds for Xim > 0, Rim > 0 and ρim1 > 0, which is equivalent to

−XimRim
−1

Xim ≤ − 2ρim1Xim + ρim1
2

Rim (47)

Similarly, we have

−XimZim
−1

Xim ≤ − 2ρim2Xim + ρim2
2

Zim (48)

Pre- and post-multiplying (18) with Φ1, Φ2 and their transposes,
successively, combining (47) and (48), it can be inferred that (44)
is an equivalent condition of (18). Moreover, from the definitions
of the matrices related, we can notice that (45) and (46) are
sufficient conditions to guarantee (19) and (20). The proof is
completed. □

 
Remark 9: In Theorem 2, there exist complex association

relationships among the relevant scalars and matrices. However, by
prescribing δm, αm, μm, ϑ, Dmin, Dmax, τa, τb, ρiml and h in advance,
the inequalities (44)–(46) are integrated into linear matrix
inequations (LMIs). Through the LMI Toolbox in MATLAB, we
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first gain the matrices Yim, Xim and Ωim. Then, we can obtain the
event-triggered parameters Ωim = Xim

−1ΩimXim
−1 and the switching

controller gains Kim = YimXim
−1.

4Illustrative examples
In this section, the proposed approach will be verified by two
illustrative examples.
 

Example 1: Consider the switched linear system [40] with

A1 =
−0.2274 −0.0594 0.53
−0.2667 −0.883 0.081

0.133 −0.74 0.1
, B1 =

−1.8555
−1.204
−2.2

A2 =
−0.1135 0.3756 −0.21
0.6404 −0.2835 0.33

0.1 −0.344 −0.1
, B2 =

−1.8555
−1.204
−2.2

By checking the eigenvalues of system matrices, it is clear that
the original system is unstable without appropriate control input.
The sampling period is set as h = 0.01, and we consider a non-
periodic DoS attack signal Γ(t) in (2) with power-constrained
parameters dmin = 2, dmax = 0.42, τb = 2.01, which yields Dmin = 2
and Dmax = 0.43 according to (9). Choosing α1 = 0.32, α2 = 0.9,
μ1 = 1.05, μ2 = 1.05, ϑ = 1.1 and τa = 0.4 satisfies (17). Let
δ1 = 0.2, δ2 = 100, ρiml = 1.5, i ∈ 1, 2 , m ∈ 1, 2  and l ∈ 1, 2 .
It is worth pointing out that δ2 = 100 is large enough to guarantee
no events triggered compared to δ1 = 0.2, which effectively
simulates the influences of DoS attacks. By solving the matrix
inequalities in Theorem 2, the weighting matrices Ω11 and Ω21 of
the online event trigger and the switching controller gains Kim are
given as follows:

Ω11 =
20.64 −1.458 12.38

−1.457 0.6850 −1.403
12.38 −1.403 8.364

,

Ω21 =
28.09 25.10 −1.344
25.10 23.17 −1.723

−1.344 −1.723 0.4415

(49)

K11 = 3.361 −0.4740 2.334

K12 = 0.0017 0.0003 0.0008

K21 = 4.455 4.185 −0.3594

K22 = 0.4968 0.3108 0.0662

(50)

For simulation, we set the initial state as
x0 = 0.5 −0.5 −1 T. A non-periodic DoS attack signal is
produced randomly according to the prescribed power-constrained
parameters as shown in Fig. 4. The switching signal satisfying
τa = 0.4 is also depicted in Fig. 4, in which at most 37 switchings
are permitted over [0,15 s]. It can be found that the DoS attack
sequence, the switching sequence and the sampling sequence are
interlaced, which reveals the essential reason for the complexity of
time series analysis in this work. Fig. 5 shows the responses of
system state and the correspoding release period over [0,15 s]. It is
indicated that the switched system is asymptotic stable with and
without DoS attacks. Owing to the switching controllers K12 and
K22, roughly identical control performance can be gained in the two
situations. It indeed saves network resources, that is, only 185
sampled data are transmitted while the total sampled data comes to
1500 over [0,15 s]. Moreover, it is demonstrated that no data can be
successfully transmitted during the active interval of DoS attacks.
Fig. 6 illustrates the response of the control signal, whose every
jump is corresponding to a process of system switching, event
triggering or controller switching due to DoS attacks. 
 

Example 2: A second-order oscillating circuit [41] as shown in
Fig. 7 is introduced as a practical engineering example to further
manifest the feasibility and effectiveness of the proposed theories,
which can be modelled with two switching modes (S1, S2). In the
framework, R0, R1, R2, R3 denote the linear resistance, C represents
the capacitor, the current source G(VC) = − aVC, and Ev denotes
the remote-controlled input voltage to guarantee the circuit system
stable. By normalisation methods as in [41], its state equations can
be expressed by (Fig. 8)

Fig. 4 Switching signal and DoS jamming signal
 

Fig. 5 State responses and release period
 

Fig. 6 Response of the control input
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Ẋ = A1X + B1u when S1 is on

Ẋ = A2X + B2u when S2 is on
(51)

where

X =
x1

x2

,

x1 = LiL, x2 = CVC, Ẋ = dX /dτ, τ = t / LC,

A1 =
−κ −1
1 1 − g1

, A2 =
−κ −1
1 1 − g2

, B1 =
0
b1

, B2 =
0
b2

u = Ev, κ = R3 C /L, g1 = 1 −(a − (1/(R0 +R1))) L/C,
b1 = L/(R0 + R1), g2 = 1 − (a − (1/(R0 + R2))) L/C and
b2 = L/(R0 + R2).

Choosing κ = 0.6, g1 = 0.1, g2 = 10, b1 = 0.1, b2 = 5, we can
notice that the circuit system is unstable without appropriate input
voltage. Moreover, a non-periodic DoS attack signal Γ(t) in (2) is
considered as shown in Fig. 8. As in Example 1, the related
parameters are given as: dmin = 1.1, dmax = 0.7, τa = 0.4, τb = 1.11,
α1 = 1, α2 = 1.25, μ1 = 1.03, μ2 = 1.05, ϑ = 1.05, δ1 = 0.3,
δ2 = 100, ρiml = 1.6, i ∈ 1, 2 , m ∈ 1, 2  and l ∈ 1, 2 . Then,
the corresponding weighting matrices of the online event trigger
and the switching controller gains Kim are given as follows:

Ω11 =
0.8010 −2.046
−2.046 5.276

, Ω21 =
0.8732 −1.124
−1.124 1.644

(52)

K11 = 22.81 −59.07

K12 = 0.0016 −0.0012

K21 = 0.3561 −0.4729

K22 = 0.0017 −0.0016

(53)

Simulation results are demonstrated in Figs. 9 and 10. In
summary, it comes to a similar conclusion as Example 1, which
shows huge potential of the proposed algorithm in the active
control of circuit systems.

In addition, for this example, the relationships of various
parameters are investigated. From (17), we can notice that there is
a restrictive relationship between the power-constrained
parameters, dmin and dmax. Meanwhile, the power-constrained
parameters should have effects on the decay rate ρ to the point of
theoretical analysis. During the analysis, the prescribed system
parameters above is used as a set of reference parameters, and it is
worth minding that we keep the remaining ones constant when
discussing the relationship of two assigned parameters.

By a basic optimisation algorithm, the relationships are depicted
in Tables 1–4. From Table 1, it is indicated that a larger active
interval of DoS attacks is allowed with the increase of the sleeping
interval. It is relatively consistent with the reality because a larger
sleeping interval provides more control to counteract the negative
effects caused by DoS attacks. Tables 2 and 3 are used to display
the variation tendency of the decay rate ρ with the variation of dmin

and dmax. We can notice that a larger active interval of DoS attacks
slows down the rate of convergence while the larger the sleeping
interval, the larger the decay rate. Moreover, the release number Nr

for different values of δ1 is listed in Table 4. It can be inferred that
δ1 has remarkable influence on the release number as well as the
control performance.

5Conclusion
This paper has investigated the event-based control issue of
networked switched systems under non-periodic DoS attacks. With
the cooperation of specific designs in the physical plant, a novel
event-based communication scheme with a switching control
strategy is developed, which is resilient to DoS attacks. By
constructing a piecewise Lyapunov function, sufficient conditions

for exponential stability are obtained. Switching controller gains
and event-triggering parameters can be designed based on the
power constraints of DoS attacks. A numerical example is

Fig. 7 Second-order oscillating circuit
 

Fig. 8 Switching signal and DoS jamming signal
 

Fig. 9 State responses and release period
 

Fig. 10 Response of the control input
 

IET Control Theory Appl., 2020, Vol. 14 Iss. 19, pp. 3097-3106
© The Institution of Engineering and Technology 2020

3105

 17518652, 2020, 19, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-cta.2020.0536 by N

anjing Forestry U
niversity, W

iley O
nline L

ibrary on [27/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



illustrated to verify the proposed method. Moreover, the method is
successfully applied to the active control of a second-order
oscillating circuit. The simulation results demonstrate the detailed
relationships among exponential decay rate, event-triggering
parameters and constraints of DoS attacks, which can further
contribute to improving the control performance in practical
applications.
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Table 1 dmax for different values of dmin

dmin 0.5 1 3 5 7
dmax 0.32 0.7 2.2 3.7 5.2

 

Table 2 ρ for different values of dmax

dmax 0.1 0.3 0.5 0.6 0.7
ρ 0.7443 0.4968 0.2492 0.1255 0.0015

 

Table 3 ρ for different values of dmin

dmin 1 3 5 6 7
ρ 0.0015 0.6245 0.7501 0.7815 0.8040

 

Table 4 Releasing number Nr for different values of δ1 over
[0,15 s]
δ1 0.05 0.1 0.3 0.5 0.7
Nr 194 164 124 110 102
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